Modeling Celestial Motions and Next Generation Professional Development

The video, “Private Universe” showcasing Harvard graduates stumbling over the reasons for the seasons has thousands of views on YouTube and has been shared countless other times in science-ed classrooms. The sometimes laughable explanation are enough to make any space science educator laugh and grimace simultaneously, pointing to the reality that even many of our nation’s “best and brightest” still lack the scientific literacy expected of a sixth grader. Recognizing an overlap between the new MA science standards and Burlington’s science curriculum at their current grade levels, I proposed an astronomy course to help Burlington’s educators dispel their own astronomical misconceptions while engaging in three dimensional learning at the heart of the Next Generation Science Standards.


The first announcement posted on our Google Classroom

Striking the Balance between Online and Face to Face

With few opportunities built into our school year schedule for professional development after the opening week BPSCON, a hybrid course seemed most likely to draw the attention of the elementary and middle school teachers I hoped to attract. By limiting the course to just three face-to-face sessions and a handful of web-based discussions and assignments, the “after school scheduling conflicts” and/or any personal sentiment against online learning was more manageable than a credit course meeting exclusively one way or the other. Teachers who wanted the credit through Cambridge College were expected to participate in both realms while PDP seeking teachers could participate in as much of the online as they wished with the understanding that they would receive additional PDPs beyond the face-to-face time for the work they put in outside of the afternoon sessions.

Utilizing NSTA’s Earth, Sun, and Moon eBook

ebook-esmThe Earth, Sun, and Moon eBook provided a backbone of content on which face to face models could be constructed and teacher’s could share pedagogical approaches to exploring different space science phenomena. Many teachers cheered when they learned it was a digital resource that was “there’s to keep” and would be available to them, even if/when they upgrade to new devices. A number of teachers shared their intentions to use some of the animations and celestial simulators built into the eBook. As a curriculum facilitator it provides the added comfort of knowing the book and its scientifically accurate information is available to them even when I may not be.

During each week of the course teachers read specific chapters or “Science Objects,” completed the quizzes and answered questions pertaining to how a model explored in the book aided students in constructing explanations and its limitations. Supplementary resources, like this list of moon misconceptions shared by the Lunar and Planetary Institute, provided focus points for teachers to deliberate over through the Google Classroom “Question” tool.

Putting Three Dimensional Learning at the Center of our Professional Development Universe

During each of our face-to-face sessions, teachers engaged collaboratively in the scientific practices. Starting with a mind-melting tour of the milky way illustrating the overwhelming quantity of stars and the vast distances between them, teachers developed their own models explaining  why our sun shines brighter than the billions of other stars in our sky. In later classes teachers used and developed models explaining, moon phases, eclipses, and the seasonal changes in solar intensity felt on earth surface. Teachers also used planetarium apps on both tablet and laptop devices, grappling with the strengths and limitations of both models while observing the sky over large stretches of time in just a few minutes.

Analysis of data charts laying out the frequency of solar and lunar eclipses surprised even seasoned middle school space science teachers in the room.  Stunningly similar charts produced by graphing participants birthday’s total sunlight hours and highest solar altitudes hit home the significance of patterns and the mathematical predictability behind the celestial motions and what we observe in the sky.

With our face to face time waning I asked my teachers’ to evaluate the short course and what would need to change if I wanted to see them in a future short course on a different disciplinary core idea. I was over the moon with the amount of positive statements and assurances that they would be back for more. What’s more, a day later I received this email from one of the participants:

[A fellow coursemate] and I took a Teachers as Scholars class yesterday called Bringing Green to the Classroom. The teacher asked questions about planting locations and growing season based on sun angles and length of sunshine in a day in particular months of the year – we were laughing and had to hold back so we didn’t look like show-offs because, of course, thanks to you we knew all those answers!

Rarely is an astronomy course so immediately gratifying! For those interested in developing a similar course, the proposal submitted to our district’s academic review board, outlining the goals and format of the course can be seen here.

About Sean Musselman

Teacher Dad and Burlington MA Schools K-5 Science and Social Studies Curriculum Coordinator. NSTA Professional Development facilitator and author of "Think Like a Scientist: Investigating Weather and Climate" NSTA Kids ebook.
This entry was posted in Digital Tools, NGSS, Professional Development and tagged , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s